

Open Sourcing the Integrated Circuit

A talk by Haig Norian - haig.norian@gmail.com and John Sarik - trashbear@gmail.com

Columbia Lab for Unconventional Electronics

How open is open hardware?

- Open source software tool chain
- Open source board design files
- Non-open components

Literal "black box"

COLUMBIA UNIVERSITY

٠

- Instruction Set Architecture [ISA]
 - Commands that defines how to store and process data
 - The Atmel AVR is an 8-bit Reduced instruction set computing (RISC) microcontroller

ADD – Add without Carry

Description:

Adds two registers without the C Flag and places the result in the destination register Rd.

Operation:

(i) $Rd \leftarrow Rd + Rr$

	Syntax:	Operands:	Program Counter:
i)	ADD Rd,Rr	$0 \leq d \leq 31, 0 \leq r \leq 31$	$PC \leftarrow PC + 1$

16-bit Opcode:

	0000	11rd	dddd	rrrr
--	------	------	------	------

- Microarchitecture
 - How the ISA is implemented ???

Atmel AVR ATTiny13V

Photo by Travis Goodspeed

What's **really** inside a microcontroller?

Electric VLSI Design System

 Very-large-scale integration (VLSI) combines millions of transistors into a single chip

Columbia

Electronics 💳

Laboratory for

Unconventional

CLUE

 Fedora Electronics Lab is a Linux distro with a collection of open source IC design tools

COLUMBIA UNIVERSITY

- Start with schematic level simulation
- Create physical layout and simulate
- ICs are designed for one specific fabrication process dependent upon transistor channel length
 - Current standard channel lengths vary from established
 350um node [1995] to current state-of-the-art 22nm [2011]
 - Accurate simulations require accurate physical models

- ICs are fabricated in large batches in foundries
- Innovation is expensive! Globalfoundires newest foundry in Malta, NY costs \$4.6 billion
- However, the fabrication parameters are inherently closed source - protected by patents and trade secrets...

Globalfoundries foundry in Dresden

OpenCores

 OpenCores is planning to create an OpenRISC application-specific integrated circuit (ASIC) based on the open source OpenRISC 1000 RISC architecture

\$18,521.95 from 389 donations so far http://opencores.org/donation

• Milkymist

 The Milkymist video accelerator board features a 100% open source system on chip (SoC) design written in Verilog HDL.

An alternative to silicon electronics

Top: 8-bit organic microprocessor with 4,000 organic thin-film transistors. From imec

Left: Printing organic thin-film transistors with a RepRap. From mr. kim robotics

- Electronics built using polymers, plastics, small molecules, and other thin film technologies instead of silicon
- "Good enough" for many applications
- Can build transistors, inverters, op-amps, and microprocessors
- Low cost fabrication such as inkjet printing allows small scale fabrication

COLUMBIA UNIVERSITY

- CLUE is developing a range of component devices that can be integrated on a wide range of substrates to enable unique applications
 - Light emitters
- Solar cells

• Strain sensors

- Photodetectors
- Thin film batteries
- Transistors

- Use standard PCB platform complemented with printed organic electronics
- Add custom digital logic using inkjet printable organic materials
- Full control over transistor fabrication parameters and digital logic

COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

o

- Traditional silicon ICs are hard to open source
- "Unconventional" electronics are an attractive alternative
- Now is the time for the community to come together to guide the development of open ICs and open components.

Open Sourcing the Integrated Circuit

