OPEN-SOURCING THE
ENGINEERING (DESIGN)
PROCESS

Open Hardware Summit 2011

amanda wozniak,
Staff Electrical Engineer, Wyss Institute
® Amanda.Wozniak@Wyss.Harvard.Edu

Presenter
Presentation Notes
Hello. My name is Amanda Wozniak. I’m an electrical engineer, and I make open-source hardware for fun. I’m also an Advanced Technical Team member at the Wyss Institute for Biologically Inspired Engineering, where my role is to engage in technical translation and prototype development. I’m here to give a brief primer on the engineering design process that I use – because it’s the same whether I’m making ninja badges or medical devices.

mailto:Amanda.Wozniak@Wyss.Harvard.Edu�

FIRST OFF, WHAT IS THE ENGINEERING
PROCESS?

. . fabrication
great idea a miracle and
: !
for a project OCCurs: assembly

IT’S ALL OF THIS.

hardware

Presenter
Presentation Notes
What is the Engineering Design Process ™? Well, it’s the story that takes you from an idea to a product.

More specifically, a formal engineering process is a set of formal rules and milestones that a team uses to tackle a complex design problem – like making hardware – where the rules describe how to break the problem into manageable pieces and manufacture each part.

THE IDEA OF A DOCUMENTING A PROCESS IS
DEAD SIMPLE. ACTUALLY DOCUMENTING A
SPECIFIC PROCESS IS INCREDIBLY HARD.

: source
manufacturing d
I'Ules typlcal coae
S design for
application .
bug list note manufacturing
pcb
layout user description
guide design of trade-offs &
rules limitations
test plan
BOM
system ICH GERBER
description
block

: diagram safety & reliability
potentil e @)

Presenter
Presentation Notes
Sure. It SEEMS simple enough.

But we all know that making things is never straightforward, and even if you plan ahead, the process isn’t linear. Every project has its own unique requirements and stumbling blocks. You get stuck in chicken-and-egg loops and feature creep. As a result, there’s a ton of useful information you COULD communicate about your project, but no universal template for design or project management. As you try to make *anything* you end up with a plethora of technical details and you’re stuck with the burden of organizing them into meaningful documentation, and even then, you have to wonder “what purpose does this document even serve?”

What exactly is essential to communicate?

SCHEMATICS, GERBERS AND BOMS ARE A
SUFFICIENT FOR MANUFACTURING. WHY
BOTHER WITH A PROCESS? SHOULDN'T WHAT
WE MAKE BE ENOUGH?

PART REFERENCE # :
AHD-888-84@1B8R0.81
if 27 - call wlz;

Oynamizel_AX=13 Serva Canoectors _ _ _é._ L.—
_PROG ;:

I‘IF’?JEERK

l- EEEEEEEE
|..I

POWER ON C

Presenter
Presentation Notes
The most common answer is “IT DEPENDS.” And the approach I see most often is to default to the bare minimum. All open-source hardware projects are required to release schematics, boms and gerbers. Some throw in a readme.txt for good measure. And If the point of open-source hardware is that anyone can make a copy of what you made, then these files are completely sufficient to meet that goal.

And hey, it’s more than Industry gives you, right?

But, strictly speaking, these files aren’t the “source” files of hardware – they’re the manufacturing files. If you send these files to an experienced fab and assembly house, and even without any a priori knowledge of your project, they can still send you back some boards. Easy. But starting with manufacturing files is like getting an answer to a problem without knowing what the question was.

WHAT'S SO OPEN ABOUT YOUR
HARDWARE IF I HAVE TO REVERSE-
ENGINEER IT TO CONTRIBUTE?

Presenter
Presentation Notes
Putting it another way, what’s so open about your hardware if I have to reverse-engineer your design in order to contribute to it?

A major virtue of open-source hardware that the community boot-straps through share-alike. The goal is to create great resources of hardware design that’s ready to be appropriated for new and better things. But if our method of communicating our ideas to one-another requires reverse-engineering, then we aren’t collaborating. We’re working separately and that means time wasted, effort reproduced, and the growth of the entire body of open-source work stagnates.

THE GOAL IS NOT JUST TO BE OPEN ABOUT WHAT WE MADE AND HOW AWESOME IT IS, BUT TO BE OPEN ABOUT THE PROCESS THAT GOT US THERE SO OTHERS CAN BE AWESOME, TOO.

INDUSTRY IS SO SUCCESSFUL, BECAUSE
UNDERNEATH ALL THE NDAS, EVERYTHING IS
EXPOSED.

Presenter
Presentation Notes
You may not think it, but industry has already solved this problem.

When you are making a product, like a pacemaker, you’re liable to your customers to guarantee that it works well. With that much money on the line, no single engineer can act as a bottleneck. Everyone has to conform to design controls, standard operating procedures, audits. There are checks and balances to go from the idea stage to the design stage – from the design stage to the prototype – from prototype to test – back to design – to test again… If you have to reverse-engineer something another engineer made, then they didn’t do their job. The entire design process has to be followed, documented and the archives need to be made accessible to auditors.

Those are some stiff documentation requirements.

IN ADDITION TO BEING OPEN, FORMAL DESIGN
PROCESSES OFTEN SAVE YOUR BACON

Presenter
Presentation Notes
But, not only does disclosing your design rationale make your project more “open”. It’s useful! The act of documenting any formal engineering design process helps you avoid failure and makes you a better engineer.

First, if you document your process and catch a common mistake and it’s fix, you are less likely to make that mistake twice.

Second, if you open up your thought process to review, other designers will help you find the flaws in your thinking. Criticism and failure are wonderful things – without them, we’d never learn.

SURE, SOCIETY COULD COLLAPSE FROM
INSUFFICIENT DOCUMENTATION.

DON'T LET THAT INTIMIDATE YOU.

Presenter
Presentation Notes
Yet. Documentation is a difficult problem to solve, and everyone seems to regret tackling documentation after they finish a project.

So, if the process is all that and a bag of chips, let’s get to it.

THIS 1S THE STORIED ENGINEERING PROCESS

does it

] work?
design

(record your
rationale)

hold a make one
review (and test it)

ask important
questions
did you

address the

guestions?

LATHER. RINSE. REPEAT.

make many

(and profit)

THAT’S IT.

Presenter
Presentation Notes
When you take away all of the industry-specific details, a good engineering design process is incredibly simple. You live a story and write it down as you go.

First, start with your idea and you ask: WHO, WHAT, WHERE, WHY, HOW? The answers to those questions guide you to a design solution. Once you have a design, write a summary (brief or detailed) about what you made and why. You iterate until you answer all your questions (Acceptability Criteria). That story, or Design History File, serves as a comprehensive record of your project and your design decisions, and it guarantees your project is open and supportable even if you stop supporting it.

If you follow this process for every project, eventually you’ll have enough compiled knowledge write your own version of ‘The Art of Electronics.’ You’ll also have full documentation by the time you finish with your project.

REMEMBER THIS CHART – BECAUSE WE’RE GOING TO WALK THROUGH IT.

PROJECT GOAL: AUTONOMOUS ROBOT

Presenter
Presentation Notes
Let’s go through a real world example. In my job at the Wyss, one of my early projects was to re-build a research robotics demo. Let’s use this to walk through the design process steps.

FIRST, I ASKED SOME QUESTIONS...

o Why are we making this?

o Who 1s this for?

o How will this be used?

o What features does it need to have (now)?
o What features does it need to have (later)?
o What are the legacy requirements?

o Who’s going to build this?

o How many do we want to make?

o What 1s the budget?

o What is the timeline?

have
an idea

Presenter
Presentation Notes
OKAY. FIRST PART OF THE PROCESS CHART FROM SLIDE 10. MOTIVATING QUESTIONS.

First, I asked the professor a lot of motivating questions. The idea is that the answers to these questions help constrain your design problem and guides your solution.

The answers for this project ended up being, “I need something that runs research algorithms, is untethered and autonomous, is battery powered, can drive up to 40 servos, is easy enough that a student can run the demo and program it, and has expansion slots.”

ALL THE ANSWERS POINTED TO MAKING A
SHIELD FOR THE ARDUINO MEGA.

o All the benefits of open-source hardware
o Enough resources to get the job done

Battery
Charge Status

Indicator LEDs Half-Duplex UART

Select
Switch

(prog vs
Serial0)

design

(record your

rationale)

Sl Detect Circuit

ROBOTIS AX-12 Servo Controller Shield: Circuits

Presenter
Presentation Notes
OKAY. SECOND PART OF THE PROCESS CHART.

Having asked the important questions, it became very clear that I could get 90% of the way to a new prototype if I started with the Arduino MEGA. Not only does the MEGA have all of the benefits of open-source hardware (community support, large code base, supported IDE, guaranteed stability) – the AVR on the MEGA had enough hardware serial ports to control all of the legacy servos (with some added circuitry). It had GPIO to spare (for future modularity), and the shield design is just downright handy.

I made a design decision and defended my choice.

I GROUPED THE REQUIRED FEATURES INTO A
BLOCK DIAGRAM AND LOOKED FOR EXISTING
SOLUTIONS — REDUCE, REUSE, RECYCLE

o application notes

Arduino PWM
Output Pins
Pass-Through

—_—
sl — o vendor datasheets

DIGITAL

9V, 6A DC
Wall Power

Supply

v
Arduino MEGA Li-Poly -
| -]
(9V. 5V, 3.3V) Charger etector
: N kbook
Automatic o C O O O O S

P Batte Li-Poly
S QW:!' Connec?;rs g
witching Stack

Half-Duplex

Ao teoh | | ; ot O open-source
community

Arduino MEGA ADXL355 Accelerometer ADXL355
5 > —->
Analog Input Pins Connectors Accelerometer

Hardware Block Diagram

o old projects

«
w
3
[+]
a

design
(record your

rationale)

ANALOG SERIAL

Presenter
Presentation Notes

Since the Q&A also gave me an idea of the required system features, and choosing the MEGA meant that I had a starting point for system architecture, I could break everything down into small functional blocks. That meant I could find (or design) specific sub-circuits for each function.

Because of this subdivision, I could tackle each sub-module independently. Thus, a good process makes complexity manageable.

HARDWARE DESIGN WORK-FLOW

o Parts Selection and Schematic Capture

o Schematic Review — REVISIT QUESTIONS

o Layout Floor-planning (mechanical)

o PCB Layout

o Schematic + Layout Review — REVISIT QUESTIONS
o Pre-Tapeout Verification
o Manufacturing Tape-out
o Test and Characterization
o Iterate (if necessary)

o Document

o Release

Presenter
Presentation Notes
This is the only list I’m going to walk through – the other few, we will have to skip for the sake of time. But, in essence, once I have ideas for what I’m going to build, everything goes together using this type of workflow.

BEST PRACTICES: SCH/BOM

o as you select parts for your schematic, curate
your CAD library and update your Bill of
Materials as you go. This helps you to avoid
footprint and pinout mistakes

o for every part on your BOM, take the extra
time to find multiple vendors and list both the
FUNCTION of the part and its CRITICAL
SPECIFICATION (tolerance, size, cheapness,
etc).

o for each part make a note of any physical
Design Rules for the PCB layout.

Presenter
Presentation Notes
You have to be careful in your workflow, though, to follow best practices. I like to do all of my niggly part and BOM detail management during schematic capture, because once something goes to layout, the penalty for fixing stupid errors becomes very costly.

BEST PRACTICES: PCB/PROTOTYPE

o Take your Design Rules and follow them to the
best of your ability.

o Verify against Schematic.

o Review with others. REVISIT QUESTIONS.

o Built. Test.

o Iterate until satisfied.

Presenter
Presentation Notes
If you do a good job with your library and schematic capture, layout becomes a zen exercise in pushing wires and packing polyhedra. Once you’re done, though, you always have to go back and ask “DOES MY LAYOUT MATCH MY SCHEMATIC, AND DO BOTH OF THESE ADDRESS MY DESIGN QUESTIONS?”

This is called DESIGN VERIFICATION. To do it, you hold a design review and bug hunt. This helps you catch things like accidentally non-uniform header-spacing. Or LED mounting holes that are the wrong size. Of course, you ultimately have to iterate and sometimes you just have to inherit non-optimal design choices. No one’s perfect.

PRE-TAPEOUT CHECKLIST

o Have you fixed all DRC/ERC errors?

o All part footprints on PCB match BOM?

o All part pin-outs on schematic match data sheet?
o Does your schematic match your working proto?
o Did you verify the critical spec for each part?

o Did you find the right vendor part number for
each part?

o Is your part in stock? (BUY IT NOW)
o All Pin-1 designators correct?

o All RefDes labels correct?
make many
(and profit)

Presenter
Presentation Notes
Here’s a quick pre-release checklist for Schematic Capture and PCB Review

FABRICATION PACKAGE CHECKLIST

o GERBERS

o NC Drill File

o Assembly Drawing

o Pick & Place Coordinates

o BOM
e Part ID
o Reference Designator(s)
o Part Type
o Package Footprint
e Value/Description/Critical Spec
e Manufacturer’s Part Number
e Vendor’s Part Number

make many
(and profit)

Presenter
Presentation Notes
And here’s what I make sure to include in any fabrication package. I do this even if I’m building the board by hand, because the exercise is another opportunity to catch design mistakes.

SO, NOW YOUR DESIGN DOCUMENTATION IS JUST
COMPILING WHAT YOU ALREADY KNOW

o Project Introduction (Goals, Overview)
o System Block Diagram

o Discussion of Essential Features/Trade-offs
o Block-by-Block Breakdown

e Function

e Schematic block

e Layout block

o Parts selection (and critical specs)
o Performance metrics (if applicable)

o Software/Firmware Summary
o Typlcal Application make many
o User’s Quick-Start Guide

o Errata

(and profit)

Presenter
Presentation Notes
And once I get my hardware back and have tested its features, here’s what I make sure to include in any documentation package. Basically, my goal is to be so complete, no one ever has to ask me questions.

WHY BOTHER WITH ALL OF THAT PROCESS
AND DETAIL FOR A DEMO?

make many
(and profit)

Presenter
Presentation Notes
So, why bother?

WHEN YOU FOLLOW A PROCESS, YOU GAIN
EFFICIENCY. WHEN WE NEEDED TO PROTOTYPE A
DIAGNOSTIC MICROSCOPE, I HAD ALL THE PARTS.

Presenter
Presentation Notes
Well, following a solid process (along with documenting it) provides the basis for that good design reuse. I think every small project has the potential to add to the community pool. Since I had made the initial effort for the controller, when we re-visited it, it was pretty clear how to extend it to become the controller for a diagnostic microscope.

That’s design building on itself.

Think about it. This is a prototype research medical device with an Arduino inside!

HOBBY PROJECT OR INDUSTRY PRODUCT, THE GIST
OF THE PROCESS REMAINS THE SAME — ONLY THE
DETAILS CHANGE

o Design History File
o Hazard Analysis

o README.txt o Failure Mode Effects

o Schematic Analysis

o Gerber o Risk Mitigation

o BOM o Statistical
Performance

o Margins/Tolerance
o Lifetime Reliability

o SOPs '

o etc... etc... etc...

Presenter
Presentation Notes
The only difference between OSH and the production engineering process is rigor and liability. The two types of projects are just subjected to different levels of scrutiny. The bigger the project the more you naturally tend to document… mostly out of fear of reprisal, or failure, or of orphaning your work.

If your OSH project has a bug, people are annoyed. If your pacemaker has a bug, people die. Yet both extremes of engineering rigor benefit from transparency and open collaboration.

PROCESS TRANSPARENCY ALLOWS YOU TO
CONQUER:

o ANALYST BIAS — “The previous guy knew what
he was doing better than I do.”

o HUBRIS — “I know best, that other guy i1s an
1d1ot.”

o CARGO CULT THINKING — “Engineering must

be magic. If we copy 1t and 1t looks the same, it’s
oot to work, right?”

Presenter
Presentation Notes
Openness and transparency help us avoid analyst bias, hubris, and the cargo cult phenomena of engineering. The open-source community is your design team. You should feel empowered to question them and work with them.

THE MORE WE SHARE, THE MORE OTHERS
CAN QUESTION OUR DESIGN... THE FASTER
WE CAN LEARN FROM OUR COLLECTIVE
MISTAKES AND THE SOONER WE CAN
CELEBRATE OUR COLLECTIVE SUCCESSES.

Presenter
Presentation Notes
I’m an engineer who does open-source hardware for fun, even while working at a research Institute that’s trying to generate IP and make medical devices. I’m in the odd position of having a foot in each world – open academia and industry practices. So, why am I pushing to move towards openness?

The more we share, the more others can question and the faster we can learn from our collective mistakes.

QUESTIONS? COMMENTS? DROP A LINE.

o professional contact:
amanda.wozniak@wyss.harvard.edu

o personal contact: woz@mit.edu

Presenter
Presentation Notes
Thank you.

mailto:amanda.wozniak@wyss.harvard.edu�
mailto:woz@mit.edu�

	Open-Sourcing The Engineering (Design) Process
	First off, what is the engineering process?
	The IDEA of a documenting a process is DEAD SIMPLE. Actually documenting a SPECIFIC process is incredibly HARD.
	SCHEMATICs, GERBERs and BOMs are a sufficient for manufacturing. why bother with a process? Shouldn’t what we MAKE be enough?
	What’s so OPEN about your hardware if I have to REVERSE-ENGINEER it to contribute?
	Industry is so successful, because underneath all the NDAs, everything is exposed. �
	In addition to being open, FORMAL design processes often SAVE YOUR BACON
	Sure, society could collapse from insufficient documentation.��Don’t let that intimidate you.�
	THIS is the STORIED engineering process
	PROJECT GOAL: autonomous robot
	First, I asked some questions…
	All the answers pointed to making a shield for the ARDUINO MEGA.
	I grouped the required features into a block diagram and looked for existing solutions – REDUCE, REUSE, RECYCLE
	Hardware Design work-flow
	BEST PRACTICES: SCH/BOM
	BEST PRACTICES: PCB/PROTOTYPE
	Pre-Tapeout checklist
	Fabrication Package Checklist
	So, now your design documentation is just compiling what you already know
	Why bother with all of that process and detail for a demo?
	when you follow a process, you gain efficiency. when we needed to prototype a diagnostic microscope, I had all the parts.
	Hobby project or industry product, the gist of the process remains the same – only the details change
	process transparency allows you to CONQUER:
	The more we share, the more others can question our design… the faster we can learn from our collective mistakes and the sooner we can celebrate our collective successes. �
	Questions? Comments? Drop a line.

